Complex Golay sequences: structure and applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Golay sequences: structure and applications

Complex Golay sequences were introduced in 1992 to generalize constructions for Hadamard matrices using Golay sequences. (In the last section of this paper we describe some independent earlier work on quadriphase pairs–equivalent objects used in the setting of signal processing.) Since then we have constructed some new in7nite classes of these sequences and learned some facts about their struct...

متن کامل

Block Golay sequences with applications

Golay sequences have been used extensively for constructing base sequences, Yang numbers, T-sequences, Hadamard matrices, SBIBDs and Hadamard matrices with maximum possible sums. The possibility of obtaining new Golay sequences is diminishing and only non-existence results are appearing nowadays. We introduce block Golay sequences. It turns out that every result on Golay sequences could be exte...

متن کامل

Golay Sequences for DS CDMA Applications

Golay complementary sequences, often referred to as Golay pairs, are characterised by the property that the sum of their aperiodic autocorrelation functions equals to zero, except for the zero shift. Because of this property, Golay complementary sequences can be utilised to construct Hadamard matrices defining sets of orthogonal spreading sequences for DS CDMA systems of the lengths not necessa...

متن کامل

A computer search for complex Golay sequences

We report on a computer search for complex Golay sequences of short length. All such sequences of length 11 and 13 will be classified.

متن کامل

Golay Complementary Sequences

Complementary sequences were introduced by Marcel Golay [1] in the context of infrared spectrometry. A complementary pair of sequences (CS pair) satis£es the useful property that their out-of-phase aperiodic autocorrelation coef£cients sum to zero [1, 2]. Let a = (a0, a1, . . . , aN−1) be a sequence of length N such that ai ∈ {+1,−1} (we say that a is bi-polar). De£ne the Aperiodic Auto-Correla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2002

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(01)00162-5